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ABSTRACT

The first total synthesis of the naturally occurring nonenolide, microcarpalide, is described. The key step in the synthesis was the ring-closing
metathesis of a dienic ester prepared in turn by coupling an acid and an alcohol stereoselectively synthesized from (S,S)-tartaric acid and
(R)-glycidol, respectively.

From fermentation broths of an unidentified endophytic
fungus growing on the bark ofFicus microcarpaL., T.
Hemscheidt and co-workers were able to isolate a cytotoxic
lactone, which they named microcarpalide. The compound
showed strong antimicrofilament activity and was shown to
have structure1 by means of spectroscopic methods. Its
absolute configuration was determined with the aid of the
exciton chirality method.1

Within our recently initiated program on the synthesis of
natural lactones using ring-closing metathesis (RCM) as one
of the key steps,2 we have devised a stereoselective syntheses
for nonenolide1. The retrosynthetic analysis is depicted in
Scheme 1. The macrocyclization step relies on a RCM of
diolefinic ester2. Disconnection of the ester bond in2 leads
to chiral nonracemic fragments3 and 4 (MOM ) meth-
oxymethyl),3 derived in turn from (S,S)-tartaric acid and (R)-
glycidol 5, respectively.

The known acid3 was readily prepared from (S,S)-tartaric
acid by means of a literature procedure.4 Homoallylic alcohol
4 was prepared from5 as described in Scheme 2. Silylation
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of the hydroxyl group of55 followed by epoxide opening
with a n-pentyl cuprate reagent6 afforded alcohol6, which
was then protected as its MOM derivative7. Desilylation of
the latter to8 followed by Swern oxidation under mild
conditions7 affordedR-alkoxy aldehyde98 which, without
purification, was immediately allowed to react with allyl tri-
n-butylstannane in the presence of MgBr2‚Et2O (chelation
control conditions).9 This provided4 in good yield and with
high stereoselectivity (dr was judged to beg98%, as the
minor stereoisomer was not detected by means of high-field
1H and13C NMR).

Carboxylic acid3 was then coupled with alcohol4 to yield
diene ester10 (Scheme 3). This reaction set the stage for
the crucial RCM, which was successful with ruthenium
catalystA.10 Thus, a 0.001 M solution of10 and 20 mol %
of A was heated at reflux for 24 h in dry, degassed CH2Cl2.
This provided a 2:1E/Z mixture of macrocyclic lactones from
which the (E)-isomer11 was isolated by means of column
chromatography on silica gel. It is worth mentioning here
that the use of the second-generation ruthenium catalystB11

gave rise to the almost exclusive formation of (Z)-11. Similar

differences in behavior between these catalyst types have
previously been observed by Fürstner and co-workers in their
approach to other natural nonenolides.12 One of the catalysts
these authors used was structurally similar toA but had an
indenylidene group instead of the benzylidene moiety. The
other catalyst was close toB but with an additional CdC
bond in the imidazole ring. They attributed the different
stereochemical outcome to the higher activity of the imida-
zolylidene-substituted catalyst, which was able to isomerize
the CdC bond of the RCM product. In consequence, the
E/Z ratio was no longer kinetically controlled but rather the
result of a chemical equilibrium. This caused a marked
enhancement in the percentage of the (Z)-isomer, which in
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Scheme 2a

a Reagents and conditions: (a) (i) TPSCl, Et3N, DMAP, CH2Cl2,
rt, 18 h, 93%; (ii) CH3(CH2)4MgBr, CuI, THF,-30 °C, 87%. (b)
MOMCl, Et3N, DMAP, CH2Cl2, rt, 18 h, 87%. (c) TBAF, THF, 5
h, rt, 93%. (d) (COCl)2, DMSO, CH2Cl2, -78 °C, 30 min, then
N,N-diisopropyl ethylamine, 2 min at-78 °C, then rt. (e)
Bu3SnCH2CHdCH2, MgBr2‚Et2O, 3 Å MS, CH2Cl2, 3 h at-78
°C, then 1.5 h at-40 °C, 60% combined yield of the two last
steps.

Scheme 3a

a Reagents and conditions: (a) DCC, DMAP, CH2Cl2, rt, 18 h,
86%. (b) 20 mol % of catalystA, CH2Cl2, reflux, 24 h (see text),
67%. (c) SMe2, BF3‚Et2O, -10 °C, 30 min, 71%. (d) (CH2SH)2,
BF3, CH2Cl2, 0 °C, 1 h, 66%.
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their molecules was shown to be the thermodynamically
more stable one. In the case of lactone11, theoretical
calculations have shown that the (Z)-isomer is more stable
than the (E)-isomer by about 2 kcal/mol.13 Consequently,
the same explanation proposed by Fürstner et al. might be
valid here.

Selective removal of the MOM group in11 was feasible
under mild conditions14 and furnished acetonide12, the
properties of which (NMR, MS) were identical to those
reported.1 Preparation of the target molecule1 was finally
achieved by one-pot removal of all protecting groups in
compound11.15 The physical and spectral properties of
synthetic1 turned out to be identical to those reported for
the natural compound. As reported by Hemscheidt and co-
workers for the natural product,1 the NMR spectra of
synthetic1 at room temperature revealed the presence of two
slowly interconverting conformers in an approximate 3-3.5:1
ratio.

In summary, a convergent, stereoselective synthesis of the
pharmacologically active lactone1 has been achieved with
two commercially available, chiral reagents (R)-glycidol and
(S,S)-tartaric acid as the starting materials. Minor modifica-
tions of the synthetic route described above will lead to
nonnatural diastereoisomers of the natural lactone, to be used
for studies on relationships between structure and pharma-
cological activity. Such studies are underway and will be
published soon.
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